Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stress-response transcription factors Msn2 and Msn4 couple TORC2-Ypk1 signaling and mitochondrial respiration to ATG8 gene expression and autophagy.

Identifieur interne : 000740 ( Main/Exploration ); précédent : 000739; suivant : 000741

Stress-response transcription factors Msn2 and Msn4 couple TORC2-Ypk1 signaling and mitochondrial respiration to ATG8 gene expression and autophagy.

Auteurs : Ariadne Vlahakis [États-Unis] ; Nerea Lopez Muniozguren [États-Unis] ; Ted Powers [États-Unis]

Source :

RBID : pubmed:29198169

Descripteurs français

English descriptors

Abstract

Macroautophagy/autophagy is a starvation and stress-induced catabolic process critical for cellular homeostasis and adaptation. Several Atg proteins are involved in the formation of the autophagosome and subsequent degradation of cytoplasmic components, a process termed autophagy flux. Additionally, the expression of several Atg proteins, in particular Atg8, is modulated transcriptionally, yet the regulatory mechanisms involved remain poorly understood. Here we demonstrate that the AGC kinase Ypk1, target of the rapamycin-insensitive TORC2 signaling pathway, controls ATG8 expression by repressing the heterodimeric Zinc-finger transcription factors Msn2 and Msn4. We find that Msn2 and Msn4 promote ATG8 expression downstream of the histone deacetylase complex (HDAC) subunit Ume6, a previously identified negative regulator of ATG8 expression. Moreover, we demonstrate that TORC2-Ypk1 signaling is functionally linked to distinct mitochondrial respiratory complexes. Surprisingly, we find that autophagy flux during amino acid starvation is also dependent upon Msn2-Msn4 activity, revealing a broad role for these transcription factors in the autophagy response.

DOI: 10.1080/15548627.2017.1356949
PubMed: 29198169
PubMed Central: PMC5788474


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stress-response transcription factors Msn2 and Msn4 couple TORC2-Ypk1 signaling and mitochondrial respiration to ATG8 gene expression and autophagy.</title>
<author>
<name sortKey="Vlahakis, Ariadne" sort="Vlahakis, Ariadne" uniqKey="Vlahakis A" first="Ariadne" last="Vlahakis">Ariadne Vlahakis</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Department of Molecular and Cellular Biology , College of Biological Sciences, University of California, Davis , Davis , CA , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Department of Molecular and Cellular Biology , College of Biological Sciences, University of California, Davis , Davis , CA </wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>b Department of Pathology , University of California, San Francisco , San Francisco , CA , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>b Department of Pathology , University of California, San Francisco , San Francisco , CA </wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lopez Muniozguren, Nerea" sort="Lopez Muniozguren, Nerea" uniqKey="Lopez Muniozguren N" first="Nerea" last="Lopez Muniozguren">Nerea Lopez Muniozguren</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Department of Molecular and Cellular Biology , College of Biological Sciences, University of California, Davis , Davis , CA , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Department of Molecular and Cellular Biology , College of Biological Sciences, University of California, Davis , Davis , CA </wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Department of Molecular and Cellular Biology , College of Biological Sciences, University of California, Davis , Davis , CA , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Department of Molecular and Cellular Biology , College of Biological Sciences, University of California, Davis , Davis , CA </wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29198169</idno>
<idno type="pmid">29198169</idno>
<idno type="doi">10.1080/15548627.2017.1356949</idno>
<idno type="pmc">PMC5788474</idno>
<idno type="wicri:Area/Main/Corpus">000662</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000662</idno>
<idno type="wicri:Area/Main/Curation">000662</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000662</idno>
<idno type="wicri:Area/Main/Exploration">000662</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Stress-response transcription factors Msn2 and Msn4 couple TORC2-Ypk1 signaling and mitochondrial respiration to ATG8 gene expression and autophagy.</title>
<author>
<name sortKey="Vlahakis, Ariadne" sort="Vlahakis, Ariadne" uniqKey="Vlahakis A" first="Ariadne" last="Vlahakis">Ariadne Vlahakis</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Department of Molecular and Cellular Biology , College of Biological Sciences, University of California, Davis , Davis , CA , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Department of Molecular and Cellular Biology , College of Biological Sciences, University of California, Davis , Davis , CA </wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>b Department of Pathology , University of California, San Francisco , San Francisco , CA , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>b Department of Pathology , University of California, San Francisco , San Francisco , CA </wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lopez Muniozguren, Nerea" sort="Lopez Muniozguren, Nerea" uniqKey="Lopez Muniozguren N" first="Nerea" last="Lopez Muniozguren">Nerea Lopez Muniozguren</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Department of Molecular and Cellular Biology , College of Biological Sciences, University of California, Davis , Davis , CA , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Department of Molecular and Cellular Biology , College of Biological Sciences, University of California, Davis , Davis , CA </wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Department of Molecular and Cellular Biology , College of Biological Sciences, University of California, Davis , Davis , CA , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Department of Molecular and Cellular Biology , College of Biological Sciences, University of California, Davis , Davis , CA </wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Autophagy</title>
<idno type="eISSN">1554-8635</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (deficiency)</term>
<term>Autophagy (genetics)</term>
<term>Autophagy-Related Protein 8 Family (genetics)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Glycogen Synthase Kinase 3 (metabolism)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (metabolism)</term>
<term>Mitochondria (metabolism)</term>
<term>Repressor Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Stress, Physiological (genetics)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (déficit)</term>
<term>Autophagie (génétique)</term>
<term>Complexe-2 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Famille de la protéine-8 associée à l'autophagie (génétique)</term>
<term>Glycogen Synthase Kinase 3 (métabolisme)</term>
<term>Mitochondries (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de liaison à l'ADN (métabolisme)</term>
<term>Protéines de répression (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Stress physiologique (génétique)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Amino Acids</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Acides aminés</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Autophagy</term>
<term>Autophagy-Related Protein 8 Family</term>
<term>Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Autophagie</term>
<term>Famille de la protéine-8 associée à l'autophagie</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Stress physiologique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>Glycogen Synthase Kinase 3</term>
<term>Mechanistic Target of Rapamycin Complex 2</term>
<term>Mitochondria</term>
<term>Repressor Proteins</term>
<term>Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Facteurs de transcription</term>
<term>Glycogen Synthase Kinase 3</term>
<term>Mitochondries</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines de répression</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Macroautophagy/autophagy is a starvation and stress-induced catabolic process critical for cellular homeostasis and adaptation. Several Atg proteins are involved in the formation of the autophagosome and subsequent degradation of cytoplasmic components, a process termed autophagy flux. Additionally, the expression of several Atg proteins, in particular Atg8, is modulated transcriptionally, yet the regulatory mechanisms involved remain poorly understood. Here we demonstrate that the AGC kinase Ypk1, target of the rapamycin-insensitive TORC2 signaling pathway, controls ATG8 expression by repressing the heterodimeric Zinc-finger transcription factors Msn2 and Msn4. We find that Msn2 and Msn4 promote ATG8 expression downstream of the histone deacetylase complex (HDAC) subunit Ume6, a previously identified negative regulator of ATG8 expression. Moreover, we demonstrate that TORC2-Ypk1 signaling is functionally linked to distinct mitochondrial respiratory complexes. Surprisingly, we find that autophagy flux during amino acid starvation is also dependent upon Msn2-Msn4 activity, revealing a broad role for these transcription factors in the autophagy response.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29198169</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>06</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1554-8635</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>Autophagy</Title>
<ISOAbbreviation>Autophagy</ISOAbbreviation>
</Journal>
<ArticleTitle>Stress-response transcription factors Msn2 and Msn4 couple TORC2-Ypk1 signaling and mitochondrial respiration to ATG8 gene expression and autophagy.</ArticleTitle>
<Pagination>
<MedlinePgn>1804-1812</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/15548627.2017.1356949</ELocationID>
<Abstract>
<AbstractText>Macroautophagy/autophagy is a starvation and stress-induced catabolic process critical for cellular homeostasis and adaptation. Several Atg proteins are involved in the formation of the autophagosome and subsequent degradation of cytoplasmic components, a process termed autophagy flux. Additionally, the expression of several Atg proteins, in particular Atg8, is modulated transcriptionally, yet the regulatory mechanisms involved remain poorly understood. Here we demonstrate that the AGC kinase Ypk1, target of the rapamycin-insensitive TORC2 signaling pathway, controls ATG8 expression by repressing the heterodimeric Zinc-finger transcription factors Msn2 and Msn4. We find that Msn2 and Msn4 promote ATG8 expression downstream of the histone deacetylase complex (HDAC) subunit Ume6, a previously identified negative regulator of ATG8 expression. Moreover, we demonstrate that TORC2-Ypk1 signaling is functionally linked to distinct mitochondrial respiratory complexes. Surprisingly, we find that autophagy flux during amino acid starvation is also dependent upon Msn2-Msn4 activity, revealing a broad role for these transcription factors in the autophagy response.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Vlahakis</LastName>
<ForeName>Ariadne</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>a Department of Molecular and Cellular Biology , College of Biological Sciences, University of California, Davis , Davis , CA , USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>b Department of Pathology , University of California, San Francisco , San Francisco , CA , USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lopez Muniozguren</LastName>
<ForeName>Nerea</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>a Department of Molecular and Cellular Biology , College of Biological Sciences, University of California, Davis , Davis , CA , USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Powers</LastName>
<ForeName>Ted</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">0000-0002-2007-3819</Identifier>
<AffiliationInfo>
<Affiliation>a Department of Molecular and Cellular Biology , College of Biological Sciences, University of California, Davis , Davis , CA , USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 GM007377</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>12</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Autophagy</MedlineTA>
<NlmUniqueID>101265188</NlmUniqueID>
<ISSNLinking>1554-8627</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C113757">ATG8 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071190">Autophagy-Related Protein 8 Family</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C081935">MSN2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C081937">MSN4 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012097">Repressor Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C089979">UME6 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076225">Mechanistic Target of Rapamycin Complex 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.26</RegistryNumber>
<NameOfSubstance UI="D038362">Glycogen Synthase Kinase 3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.12.1</RegistryNumber>
<NameOfSubstance UI="C068124">MCK1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071190" MajorTopicYN="N">Autophagy-Related Protein 8 Family</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038362" MajorTopicYN="N">Glycogen Synthase Kinase 3</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076225" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 2</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012097" MajorTopicYN="N">Repressor Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">TOR signaling</Keyword>
<Keyword MajorTopicYN="Y">Ypk1</Keyword>
<Keyword MajorTopicYN="Y">autophagy</Keyword>
<Keyword MajorTopicYN="Y">electron transport chain (ETC) complexes</Keyword>
<Keyword MajorTopicYN="Y">gene expression</Keyword>
<Keyword MajorTopicYN="Y">mitochondrial respiration</Keyword>
<Keyword MajorTopicYN="Y">signal transduction</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>12</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>12</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29198169</ArticleId>
<ArticleId IdType="doi">10.1080/15548627.2017.1356949</ArticleId>
<ArticleId IdType="pmc">PMC5788474</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Dev Cell. 2009 Jul;17 (1):87-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19619494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2007 Feb;12(2):209-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17295840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2013 Sep;24(18):2918-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23904270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2009;43:67-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19653858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Jun 1;30(11):2101-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21468027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 9;280(36):31582-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16027116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:3-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 31;109 (5):1536-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22307609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Jul 1;17(13):3556-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9649426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2013 Jan 9;32(1):9-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23149385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2008 Mar;14(3):365-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18331717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jul 10;109 (28):11206-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22733735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Med. 2003 Mar-Apr;9(3-4):65-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12865942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1983;101:167-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6310320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 16;425(6959):686-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14562095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1993 Oct 25;333(1-2):169-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8224160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D161-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24170807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Oct;9(10):1102-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17909521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;350:87-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Nov 27;151(5):1025-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11086004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Jan;47(1):223-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12492866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Feb 15;12(4):586-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9472026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Jun;11(6):2103-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10848632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2010 Oct;6(7):879-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20647741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Nov 23;408(6811):488-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11100732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Aug;188(4):859-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21625004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Nov 1;20(21):5971-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11689437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 May 1;15(9):2227-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8641288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2013 Nov 15;587(22):3648-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24140345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2010 Apr;22(2):124-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20034776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Aug;19(8):3290-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18508918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Jul 13;130(1):165-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17632063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2014 Dec 1;25(24):3962-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25253719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2012 Dec;8(12 ):1835-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22960621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Feb;1813(2):358-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21167216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2014;10 (11):2085-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25426890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jun 28;9(7):676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22743772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Oct;18(10):4180-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17699586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 Feb 14;368(7):651-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23406030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25002487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Dec 15;11(24):3432-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9407035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17049-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2016 Dec 19;215(6):779-788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2004 Sep;21(12 ):1057-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15449304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Feb;14 (2):477-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12589048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1992 Oct;119(2):301-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1400575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):E3622-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24003133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cardiovasc Pharmacol. 2012 Aug;60(2):110-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22343372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Jan 11;132(1):27-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18191218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2014 Feb 13;6(3):541-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24462291</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Vlahakis, Ariadne" sort="Vlahakis, Ariadne" uniqKey="Vlahakis A" first="Ariadne" last="Vlahakis">Ariadne Vlahakis</name>
</region>
<name sortKey="Lopez Muniozguren, Nerea" sort="Lopez Muniozguren, Nerea" uniqKey="Lopez Muniozguren N" first="Nerea" last="Lopez Muniozguren">Nerea Lopez Muniozguren</name>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
<name sortKey="Vlahakis, Ariadne" sort="Vlahakis, Ariadne" uniqKey="Vlahakis A" first="Ariadne" last="Vlahakis">Ariadne Vlahakis</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000740 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000740 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29198169
   |texte=   Stress-response transcription factors Msn2 and Msn4 couple TORC2-Ypk1 signaling and mitochondrial respiration to ATG8 gene expression and autophagy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29198169" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020